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Abstract 

Although abnormal accumulation of amyloid in the brain is an early biomarker of Alzheimer’s disease (AD), wide vari‑
ation in cognitive trajectories during life can be seen in the setting of brain amyloidosis, ranging from maintenance of 
normal function to progression to dementia. It is widely presumed that cognitive resilience (i.e., coping) to amyloido‑
sis may be influenced by environmental, lifestyle, and inherited factors, but relatively little in specifics is known about 
this architecture. Here, we leveraged multimodal longitudinal data from a large, population‑based sample of older 
adults to discover genetic factors associated with differential cognitive resilience to brain amyloidosis determined by 
positron emission tomography (PET). Among amyloid‑PET positive older adults, the AD risk allele APOE ɛ4 was associ‑
ated with worse longitudinal memory trajectories as expected, and was thus covaried in the main analyses. Through a 
genome‑wide association study (GWAS), we uncovered a novel association with cognitive resilience on chromosome 
8 at the MTMR7/CNOT7/ZDHHC2/VPS37A locus (p = 4.66 ×  10–8, β = 0.23), and demonstrated replication in an inde‑
pendent cohort. Post‑hoc analyses confirmed this association as specific to the setting of elevated amyloid burden 
and not explained by differences in tau deposition or cerebrovascular disease. Complementary gene‑based analyses 
and publically available functional data suggested that the causative variant at this locus may tag CNOT7 (CCR4‑NOT 
Transcription Complex Subunit 7), a gene linked to synaptic plasticity and hippocampal‑dependent learning and 
memory. Pathways related to cell adhesion and immune system activation displayed enrichment of association in 
the GWAS. Our findings, resulting from a unique study design, support the hypothesis that genetic heterogeneity is 
one of the factors that explains differential cognitive resilience to brain amyloidosis. Further characterization of the 
underlying biological mechanisms influencing cognitive resilience may facilitate improved prognostic counseling, 
therapeutic application, and trial enrollment in AD.
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Introduction
Observational studies support a dynamic model of Alz-
heimer’s disease (AD), in which amyloidosis is an early 
event that is eventually followed by other biomarker 
abnormalities and clinical impairment [24, 27]. However, 
a considerable fraction of older adults display abnormal 
accumulation of amyloid in the absence of overt cognitive 
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impairment, with the frequency of this finding modi-
fied by age, APOE (apolipoprotein E) ɛ4 status, and sex, 
among other factors [7, 28, 30]. This observation high-
lights the importance of elucidating the underlying bio-
logical mechanisms of resilience to (i.e., coping with) 
amyloid pathology within frameworks attempting to 
forecast cognitive outcomes in AD [3].

It is widely presumed that resilience may be influ-
enced by the environment and lifestyle [41] in addition to 
inherited factors [23]. The recent discovery of the APOE 
(apolipoprotein E) Christchurch mutation as protective 
in the face of high amyloid burden and an AD-causative 
PSEN1 (presenilin 1) mutation represents a germane 
exemplar for this concept [1]. However, there is a relative 
paucity of literature on genetic resilience factors specific 
to AD. Analyses of general cognitive decline in the wider 
setting of older adults have most consistently implicated 
variants in the APOE region on chromosome 19 [13–15, 
70]. A few studies have examined putative downstream 
effects in the setting of AD pathology for specific candi-
date loci, including the APOE ɛ4 [46], KL (klotho) VS [6], 
and BDNF (brain-derived neurotrophic factor) Val66Met 
[19] alleles, among others. However, much of the pre-
sumed genetic architecture underlying resilience to AD 
pathology is still unaccounted for by known candidate 
genes.

The validation and expansion of positron emission 
tomography (PET) imaging biomarkers creates the 
opportunity to noninvasively assess in  vivo AD pathol-
ogy in large samples conducive for discovery-oriented 
genetic analyses of resilience. In this study, we hypoth-
esized that novel gene variants and biological pathways 
would be associated with differential cognitive resilience 
to amyloidosis. We tested this hypothesis by conducting 
a genome-wide association study (GWAS) of longitudinal 
memory performance in a large, population-based sam-
ple of amyloid-PET positive older adults.

Methods
Selection of participants
The discovery cohort in this study was drawn from the 
Mayo Clinic Study of Aging (MCSA), a population-based 
prospective study of older adults residing in Olmsted 
County, Minnesota [49, 54]. Individuals were identi-
fied for recruitment using the Rochester Epidemiology 
Project (REP) medical records linkage system [56, 61]. 
Enrollment began in 2004 for individuals 70–89 years of 
age, and the study was subsequently extended to include 
those aged 50 and older (2012) and 30 and older (2015). 
Clinical data through questionnaires and in-person his-
tory, neuropsychological assessment, multimodal neuro-
imaging, and laboratory tests were assessed at selected 
visits based on study protocols. Clinical diagnoses were 

made by a consensus panel, incorporating all available 
information. All study protocols were approved by the 
Mayo Clinic and Olmsted Medical Center Institutional 
Review Boards. Written informed consent was obtained 
from all participants or their surrogates.

The replication cohort analyzed separately in this study 
was drawn from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI), a longitudinal multicenter study 
launched in 2004 as a public–private partnership [63, 
68]. The goal of the ADNI is to facilitate development 
of clinical, imaging, genetic, and biochemical biomark-
ers for the early detection and tracking of AD. Indi-
viduals 55–90  years of age were recruited from over 50 
sites across the United States and Canada, and initially 
followed at 6–12-month intervals for 2–3  years. Subse-
quent study phases have extended follow-up for existing 
participants and have enrolled additional individuals. 
All participants provided written informed consent and 
study protocols were approved by each site’s institutional 
review board. Further information about the ADNI can 
be found at http:// adni. loni. usc. edu/.

Inclusion criteria for this study included the follow-
ing: age 50 years or older, the presence of amyloid posi-
tivity by PET, at least 2 subsequent time points with 
neuropsychological assessment data, and genome-wide 
single nucleotide polymorphism (SNP) genotype data. 
This resulted in 546 individuals in the MCSA discov-
ery cohort and 545 individuals in the ADNI replication 
cohort. A separate, non-overlapping group of 953 amy-
loid PET negative individuals from the MCSA was ana-
lyzed post-hoc for comparison.

Demographic and clinical data
Age at the time of neuroimaging, sex, and years of educa-
tion were ascertained for each patient. In the discovery 
cohort, a measure of cerebrovascular disease risk (CMC) 
was ascertained from health care records as a summa-
tion of the presence or absence of hypertension, hyper-
lipidemia, cardiac arrhythmias, coronary artery disease, 
congestive heart failure, diabetes, and stroke [67].

Longitudinal cognitive data
For each applicable participant visit in the MCSA dis-
covery cohort, a composite memory domain z-score 
was generated as described previously [34, 55], based on 
the delayed recall tasks of the Wechsler Memory Scale-
Revised Logical Memory II, Wechsler Memory Scale-
Revised Visual Reproduction II, and Auditory Verbal 
Learning Test from cognitively unimpaired participants 
aged 50 and older and weighted back to the Olmsted 
County population. For each subject, linear regression 
on these memory z-scores was used to generate a sub-
ject-specific intercept and slope. The variability in slope 
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across all of the subjects captures the variability in longi-
tudinal trajectories of memory functioning across all of 
the subjects, and was used as our primary outcome meas-
ure. The intercept for each subject was used as a covari-
ate in analyses, representing an estimate of early-age. For 
the ADNI replication cohort, the 13-item Alzheimer’s 
Disease Assessment Scale-Cognitive (ADAS-Cog) Sub-
scale was used as the analogous measure of interest based 
on previous work employing longitudinal cognitive data 
in ADNI [2, 39]. Linear regression was similarly used to 
generate a subject-specific intercept and slope for each 
participant based on longitudinal ADAS-Cog scores for 
the replication cohort, with the variability in slope across 
all subjects again used as the primary outcome.

Genetic data
Peripheral blood samples were acquired at the base-
line visit for 1783 MCSA participants. Genomic DNA 
extracted from these samples was used for genotyping of 
658,805 SNPs via the Illumina Infinium Global Screen-
ing Array-24 v2.0. Standard SNP-level quality control 
(QC) filters were applied using PLINK version 1.9 [9, 51], 
including call rate ≥ 95%, Hardy–Weinberg Equilibrium 
p ≥ 1 ×  10–5, and minor allele frequency (MAF) ≥ 1%. 
Subject-level QC filters included call rate ≥ 98%, sex 
checks versus clinical data, Caucasian ancestry deter-
mined through STRU CTU RE version 2.3.4, and ensur-
ing no cryptic first- or second-degree relatedness (PLINK 
identity by descent PI_HAT < 0.25). Following these pro-
cedures, GWAS array data passing QC was available for 
506,136 SNPs and 1727 MCSA participants. APOE ɛ2/
ɛ3/ɛ4 allele status determined through the GWAS array 
(via genotyping of rs429358 and rs7412) displayed 100% 
concordance with results from standard restriction digest 
methods [20]. As a conservative measure to account for 
any potential confounding effects of population strati-
fication, principal component analysis of the genotype 
data with SNPRelate [71] was used to generate eigen-
vectors for use as covariates. Genome-wide imputation 
was performed with the Michigan Imputation Server 
[12] using Minimac version 4-–1.0.2 and the Haplotype 
Reference Consortium reference panel [43]. Following 
additional post-imputation QC filters including SNP 
call rate ≥ 95%, sample call rate ≥ 98%, Hardy–Weinberg 
Equilibrium p ≥ 1 ×  10–6, MAF ≥ 1%, stringent imputa-
tion quality measure (r2) ≥ 0.8, and removal of SNPs with 
no or duplicate identifying rs number, data was available 
for 6,153,814 SNPs and 1727 MCSA participants. For this 
study, to ensure appropriate power for analyzed variants 
given the sample size in the discovery cohort, an addi-
tional MAF filter of 5% was applied, leaving 4,456,454 
SNPs for analysis in the GWAS.

ADNI-1, ADNI-GO, and ADNI-2 participants were 
genotyped on one of three Illumina GWAS arrays as 
described previously [58]. Processed, post-QC genotype 
data files were downloaded from the ADNI database 
(http:// adni. loni. usc. edu). Imputation was performed 
within groups based on the genotyping array utilized, and 
then the independently imputed datasets were merged 
using PLINK. Imputation methods and post-imputation 
QC were performed as in the MCSA dataset and resulted 
in 5,599,642 SNPs for 1662 unique ADNI participants. In 
the merged sample, a total of 18 individuals (representing 
6 pairs and 2 trios) were found to have cryptic related-
ness (PI_HAT ≥ 0.25) based on identity by descent analy-
sis using common (MAF ≥ 5%) SNPs roughly pruned for 
LD (r2 < 0.6). After one individual from each pair or trio 
was randomly selected for retention, data was available 
for analysis for 1652 unique ADNI participants. As with 
the MCSA dataset, the first 5 principal component eigen-
vectors were used as covariates in genetic analyses.

Neuroimaging data
In the MCSA, amyloid PET and tau PET scans were 
acquired and analyzed using an in-house fully-auto-
mated image processing pipeline as described in detail 
elsewhere [26]. Amyloid PET imaging was performed 
with Pittsburgh compound B (PiB) [33] and tau PET was 
performed with AV-1451 (18F-flortaucipir), synthesized 
on site with precursor supplied by Avid Radiopharma-
ceuticals [42]. Standardized uptake value ratio (SUVR) 
measures for amyloid and tau PET were generated by 
normalizing median tracer uptake in target regions of 
interest (ROIs) to the cerebellar crus grey matter. The 
target amyloid PET measure was global cortical amy-
loid load, computed from the prefrontal, orbitofron-
tal, parietal, temporal, anterior cingulate, and posterior 
cingulate/precuneus ROIs. Amyloid PET positivity was 
defined by global cortical SUVR ≥ 1.48 as previously 
described [42]. The target tau PET measure was a meta-
ROI computed from the entorhinal, amygdala, parahip-
pocampal, fusiform, and inferior and middle temporal 
ROIs [26]. Tau PET positivity was defined by meta-ROI 
SUVR ≥ 1.25 as previously described [25]. Entorhinal 
cortex tau PET burden was also assessed.

MRI for MCSA participants was performed on 3T 
MRI systems (General Electric Healthcare, Waukesha, 
WI). Target MRI biomarkers of neurodegeneration were 
derived using FreeSurfer version 5.3 and included hip-
pocampal volume and the cortical thickness in an AD-
signature meta-ROI comprised of the entorhinal cortex 
and inferior and middle temporal and fusiform gyri 
[59]. Target MRI biomarkers of cerebrovascular disease 
included white matter hyperintensities (WMHs) from 
FLAIR MRI [17] and fractional anisotropy (FA) of the 
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genu of the corpus callosum from diffusion tensor imag-
ing (DTI) MRI [66].

In the ADNI, amyloid PET was performed with 
18F-florbetapir using acquisition and processing protocols 
as described at http:// www. adni- info. org. Amyloid PET 
summary measures generated at the University of Cali-
fornia, Berkeley [29] were downloaded from the ADNI 
database (http:// adni. loni. usc. edu). The target amyloid 
PET measure was global cortical amyloid load, assessed 
from FreeSurfer-defined regions of interest including the 
anterior and posterior cingulate, frontal, lateral parietal, 
and lateral temporal cortices, and normalized to a whole 
cerebellum reference region [39]. Amyloid PET posi-
tivity was defined by global SUVR ≥ 1.11, as previously 
described [38].

Statistical analysis
Genetic association tests with the memory slope pheno-
type were performed using PLINK version 1.9. Prior to 
the genome-wide scan in the discovery dataset, the APOE 
ɛ4 and ɛ2 alleles were analyzed for association signal 
given their well-validated relationship with AD and age-
related cognitive trajectories. These candidate analyses 
and the GWAS were conducted on the discovery sample 
using linear regression under an additive genetic model 
and including age at the time of neuroimaging, sex, years 
of education, memory domain intercept (as a measure of 
premorbid performance), and the first 5 genetic principal 
component eigenvectors as covariates. For the GWAS, 
APOE ɛ4 status (presence versus absence) was also 
included as a covariate to account for its demonstrated 
association. The standard conservative threshold for 
genome-wide significance (p < 5 ×  10–8) was used in the 
GWAS [48], and SNPs exceeding this association thresh-
old in the discovery cohort were analyzed for confirma-
tory signal (p < 0.05) in the replication cohort. Effect sizes 
were denoted by standardized beta coefficients. Manhat-
tan and Q-Q plots were generated using Haploview ver-
sion 4.2 [4], and regional Manhattan plots were generated 
using the web-based tool LocusZoom [50].

To accompany the SNP-level GWAS results, gene-
based analyses were performed using H-MAGMA [60], 
which utilizes functional genomics evidence via tissue-
specific Hi-C chromatin interactions to map SNPs to 
genes. We applied the purified human astrocyte Hi-C 
data for mapping of SNPs to genes in H-MAGMA, given 
the high expression of degenerative-disorder-associated 
genes in these cells [60]. Summary p values were gener-
ated for 50,777 Ensembl transcript IDs [22], represent-
ing 18,038 unique HGNC gene IDs, and accounting for 
SNP-level association statistics and gene size and density. 
Complementary pathway analyses were performed using 
the GWAS SNP-based summary statistics, GSA-SNP2 

[69], and the Canonical Pathways collection version 7.2 
from the Molecular Signatures Database [62]. For the 
pathway analyses, set size was restricted to 5–200 genes 
to limit the potential for size-influenced spurious asso-
ciations, and the false discovery rate (FDR) was used to 
account for multiple comparisons [52].

Additional analyses to extend and complement the 
GWAS were performed on the MCSA discovery cohort 
with SPSS Statistics version 22.0 (IBM Corp., Armonk, 
NY) and SAS version 9.4 (SAS Institute Inc., Cary, NC). 
Post-hoc models including cycle number to account for 
potential learning effects were substantially unchanged 
from the primary results. Within the discovery sample, 
gene variant associations with PET and MRI biomarkers 
were assessed, including age (at scan), sex, APOE ɛ4 sta-
tus, and genetic principal components as covariates. For 
volume and thickness measures from MRI (hippocam-
pal volume, AD meta-ROI cortical thickness, and FLAIR 
WMH), total intracranial volume was also included as 
a covariate. Post-hoc analyses of SNP associations with 
the primary memory phenotype utilized a supramaxi-
mal threshold of global PiB SUVR ≥ 2.0 (based on previ-
ous work [35]) to sub-stratify the sample into individuals 
with extremely high amyloid burden versus those with 
abnormal amyloidosis below this threshold (1.48 ≤ global 
PiB SUVR < 2.0). Separate post-hoc analyses also strati-
fied the sample based on tau PET positivity.

Results
Sample characteristics
The discovery cohort (Table 1) included 546 individuals 
aged 50  years or older and amyloid PET positive from 
the population-based MCSA. All subjects had a baseline 
visit and at least one clinical follow-up with complete 
neuropsychological assessment data. Median follow-up 
time was 4.2  years (range 1–13  years) and the median 
number of longitudinal visits was 4 (range 2–11). Most 
of the sample (85%) had a diagnosis of cognitively unim-
paired at the initial imaging visit, and just over half of the 
sample (58%) did not carry the APOE ɛ4 allele. The rep-
lication cohort, used for targeted validation of top SNPs 
from the discovery sample GWAS, included 545 amy-
loid PET positive adults aged 55 years or older from the 
ADNI. An additional sample of 953 amyloid PET nega-
tive older adults from the MCSA was analyzed post-hoc 
for comparison.

Hypothesis‑driven analyses of APOE alleles with cognitive 
resilience to amyloidosis
We first analyzed the APOE ɛ4 and ɛ2 alleles given the 
body of literature relating these to AD and cognitive 
decline. Age at the imaging visit, sex, years of educa-
tion, regression-derived memory domain intercept (as a 
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measure of early-life performance), and genetic principal 
component eigenvectors were included as covariates. As 
expected, APOE ɛ4 was associated with worse memory 
trajectory in the setting of amyloid PET positivity under 
both dominant (p = 0.005, standardized β = -0.12) and 
additive (p = 0.003, β = -0.13) genetic models. APOE 
ɛ2 was present in 11% of the sample and was not asso-
ciated with memory trajectory under additive (p = 0.31, 
β = 0.04) or dominant (p = 0.28, β = 0.05) models. Based 
on the validated association of the APOE ɛ4 allele with 
the primary outcome and to prioritize discovery of novel 
and independent SNP associations, APOE ɛ4 status (pre-
sent versus absent) was included as an additional covari-
ate in the GWAS.

GWAS identifies novel association on chromosome 8 
with cognitive resilience to amyloidosis
There was no evidence of spurious inflation of association 
statistics in the GWAS (λ = 1.01). A novel genome-wide 
significant association (p < 5 ×  10–8) with cognitive resil-
ience in the setting of amyloid PET positivity was identi-
fied on chromosome 8 (Fig.  1). The top associated SNP 
in this region (Fig.  2) was rs12056505 (p = 4.66 ×  10–8, 
β = 0.23), an intronic variant in MTMR7 (myotubularin-
related protein 7) that overlaps with the 3′ untranslated 
region of VPS37A (vacuolar protein sorting-associated 
protein 37A) and is nearby CNOT7 (CCR4-NOT tran-
scription complex subunit 7). Suggestive associations 
(p < 5 ×  10–6) were identified at additional loci, including 
CSMD3 (CUB and sushi multiple domains 3) which has 
been proposed as a regulator of dendrite development 
in hippocampal neurons [45], and OXCT1 (3-oxoacid 

CoA-transferase 1) which resides in a region found to 
have differential DNA methylation in dementia cases ver-
sus controls [18] (Table 2).   

Association of Chromosome 8 rs12056505 with resilience 
is specific to the amyloid‑positive setting and is validated 
in an independent sample
The GWAS hit for rs12056505 implicated a common 
variant, with MAF = 12% for the C allele. This association 
was dose-dependent, with more positive memory trajec-
tories observed for rs12056505-CC (mean slope = 0.18, 
standard error = 0.09, n = 8) and rs12056505-CT (mean 
slope = 0.02, standard error = 0.02, n = 131) individuals 
than for rs12056505-TT individuals (mean slope = -0.09, 
standard error = 0.02, n = 407). The association of 
rs12056505-C with cognitive resilience was specific to 
the amyloid-positive setting, as no corresponding signal 
was observed in a comparison cohort of amyloid-neg-
ative individuals from the MCSA (p = 0.78, β = 0.01). In 
analyses of an independent cohort of 545 amyloid-posi-
tive individuals from the ADNI, we identified modest evi-
dence of replication of the association of rs12056505 with 
cognitive resilience to amyloidosis (p = 0.04, β = 0.09).

Post‑hoc analyses in the MCSA provide context 
for the effect of rs12056505 on resilience
For deeper characterization of the GWAS hit, we fur-
ther examined rs12056505 against relevant imaging 
biomarkers (Table  3). In the MCSA discovery sample, 
rs12056505-C was weakly associated with lower global 
amyloid PET burden, but its association with cognitive 
trajectory remained robust after additionally covarying 

Table 1 Sample characteristics

Values displayed as mean (standard deviation) or number (percentage)

CU cognitively unimpaired, MCI mild cognitive impairment
a Consensus clinical diagnosis at the first PET/clinical visit; data unavailable for 4 individuals in the MCSA Discovery, 3 individuals in the MCSA Comparison, and 5 
individuals in the ADNI replication samples

MCSA (Discovery) MCSA (Comparison) ADNI (Replication)

N = 546 N = 953 N = 545

Amyloid positive Amyloid negative Amyloid positive

Age (years) 77.0 (7.7) 70.0 (9.7) 76.1 (7.5)

Sex 255 (47%) women 430 (45%) women 260 (48%) women

291 (53%) men 523 (55%) men 285 (52%) men

Education (years) 14.6 (2.8) 14.9 (2.5) 15.9 (2.8)

Median visit number 4 (1.9) 5 (1.8) 4 (1.9)

APOE ɛ4 status 317 (58%) negative 756 (79%) negative 193 (35%) negative

229 (42%) positive 197 (21%) positive 352 (65%) positive

Diagnosisa 458 (85%) CU 887 (93%) CU 103 (19%) CU

78 (14%) MCI 62 (7%) MCI 223 (41%) MCI

6 (1%) Dementia 1 (0%) Dementia 214 (40%) Dementia
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Fig. 1 Manhattan plot for the GWAS of cognitive resilience to amyloidosis. The Manhattan plot displays observed −log10 p values (y‑axis) for 
all single nucleotide polymorphisms (SNPs) tested in the GWAS of longitudinal cognitive trajectory in the setting of amyloid PET positivity. Age, 
sex, years of education, memory domain intercept (as a measure of premorbid performance), genetic principal components, and APOE ɛ4 status 
(presence versus absence) were included as covariates. An additive genetic model was utilized, along with a minor allele frequency filter of 5%. A 
genome‑wide significant association (p < 5 ×  10–8; red line) with cognitive resilience to amyloidosis was identified on chromosome 8. Suggestive 
associations (p < 5 ×  10–6; blue line) were identified on additional chromosomes. Plot created using Haploview

Fig. 2 Regional Manhattan plot for the GWAS hit on chromosome 8. Regional association data are displayed for the genome‑wide significant hit 
on chromosome 8. The top association signal in this region was for rs12056505 (denoted by the purple diamond), an intronic variant in the vicinity 
of MTMR7 (myotubularin‑related protein 7), VPS37A (vacuolar protein sorting‑associated protein 37A), and CNOT7 (CCR4‑NOT transcription complex 
subunit 7). All variants within a 500 kb region surrounding the index SNP are plotted based on their association −  log10 p values, NCBI build 37 
genomic position, and recombination rates calculated from the 1000 Genomes Project reference data. The color scale of r2 values is used to label 
SNPs based on their degree of linkage disequilibrium with the index SNP. Genes in the region are labeled below the plots, with arrows denoting 
5′‑to‑3′ orientation. Plot created using the LocusZoom software suite
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for amyloid burden in the main model (p = 9.95 ×  10–8, 
β = 0.22). In addition, when the sample was stratified 
into “extreme amyloid” (global PiB SUVR ≥ 2.0, n = 163) 
versus “high amyloid” (1.48 ≤ global PiB SUVR < 2.0, 
n = 383) groups based on prior work [35], the effect sizes 
for the association of rs12056505 with resilience were not 
substantially different (β = 0.26 in extreme amyloid group 
versus β = 0.22 in high amyloid group). Collectively, these 
results suggest that the association of rs12056505 with 
resilience was not purely mediated by differences in amy-
loid load.

In addition, rs12056505 was not significantly associated 
with MRI WMH burden or DTI-based FA of the corpus 
callosum genu, both measures of vascular brain injury. Its 
association with cognitive resilience was also unchanged 
after additionally covarying for an index score of cerebro-
vascular disease risk factors [67]. Altogether, these results 
indicate that the association of rs12056505 with resil-
ience was not mediated by better vascular brain health.

This SNP was also nominally associated with higher 
AD-signature cortical thickness and hippocampal vol-
ume, and among the small proportion of the sample with 

corresponding tau PET (106/546 = 19%), the association 
of rs12056505 with lower entorhinal cortex tau PET bur-
den was marginally nonsignificant. However, the effect 
size for rs12056505 remained strong (β = 0.35) even after 
additionally covarying for tau PET burden. Among the 
34 individuals who were A + /T + (abnormally elevated 
amyloid and tau by PET), the effect size for rs12056505 
(β = 0.26) was comparable to that of the full sample, indi-
cating that its protective association was not restricted to 
individuals without substantial AD biomarker abnormal-
ities. In addition, for rs12056505-C carriers compared 
to non-carriers there were no differences in sex (49% 
men versus 55% men, p = 0.23) or years of education 
(14.5  years versus 14.7  years, p = 0.46), indicating that 
rs12056505 genotype was not a proxy for these factors.

Gene‑ and pathway‑based associations with resilience 
to amyloidosis
To augment the SNP-level GWAS results, we used 
gene- and pathway-based analyses to assess for broader 
patterns of association signal across biologically-rele-
vant combinations of variants. Utilizing H-MAGMA 
[60], the top gene-based association was for CNOT7 
(p = 1.65 ×  10–7), which was genome-wide significant 
based on a stringent Bonferroni correction (p < 0.05/50
,777 = 9.85 ×  10–7). Additional strong gene-based asso-
ciations are listed in Table  4. Complementary pathway 
analysis using GSA-SNP2 [69] revealed enrichment of 
association with resilience for pathways related to inte-
grin-related cell adhesion, TCF (T-cell factor) signaling 
related to the Wnt/β-catenin pathway, and IFN-γ (inter-
feron gamma) signaling for immune activation, including 
two pathway-level associations significant after FDR cor-
rection (Table 5).

Candidate SNP associations with resilience in the GWAS
Within the GWAS, we additionally looked closely 
at a small set of a priori SNPs of interest, comprising 
AD risk loci and variants previously related to resil-
ience phenotypes. Among 40 SNPs which previously 
displayed genome-wide significant associations with 

Table 2 Top independent loci from the genome‑wide association study

CHR chromosome, SNP single nucleotide polymorphism, MAF minor allele frequency

Bold text indicates genome-wide significant association (p < 5 ×  10–8)

CHR SNP Gene Minor/major allele MAF Std. beta p value

8 rs12056505 MTMR7 C/T 0.120 0.23 4.66 × 10–8

8 rs2251983 CSMD3 A/C 0.454 − 0.20 1.00 ×  10–6

1 rs10863241 Intergenic A/G 0.458 0.20 3.38 ×  10–6

5 rs17291699 OXCT1 C/T 0.065 − 0.19 3.56 ×  10–6

11 rs11020813 LINC01171 C/A 0.101 0.19 4.51 ×  10–6

Table 3 Associations of the top GWAS Hit with neuroimaging 
biomarkers in the MCSA

Biomarker Chr 8 rs12056505

Global amyloid PET p = 0.03

N = 546 β = − 0.09

AD‑signature tau PET p = 0.12

N = 106 β = − 0.15

Entorhinal cortex tau PET p = 0.09

N = 106 β = − 0.17

White matter hyperintensities p = 0.11

N = 369 β = − 0.07

Corpus callosum genu fractional anisotropy p = 0.83

N = 420 β = 0.01

Hippocampal volume p = 0.02

N = 529 β = 0.08

AD‑signature cortical thickness p = 0.01

N = 531 β = 0.10
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clinical AD diagnosis in large case–control studies 
through the IGAP consortium [36, 37], nominal asso-
ciations (p < 0.05) were identified for three variants: the 
AD risk allele BIN1 rs6733839-T was associated with 
worse memory trajectory (p = 0.01, β = -0.11); the AD 
protective allele SORL1 rs11218343-C was associated 
with better memory trajectory (p = 0.04, β = 0.09); and 
the AD protective allele MEF2C rs190982-G was associ-
ated with worse memory trajectory (p = 0.03, β = -0.09). 
Although TOMM40 rs2075650 displayed nominal asso-
ciation within a basic model not accounting for APOE 
ɛ4 (p = 0.001, β = -0.14), this association was attenuated 
in the GWAS which included APOE ɛ4 as a covariate 
(p = 0.07, β = -0.11). Replication signal was not identi-
fied for SNPs reported in prior work to have associa-
tions with resilience proxy measures, including RAB10 
(RAS oncogene family Rab10) rs142787485 (p = 0.50, 
β = 0.03) [53], BDNF rs6265 (p = 0.59, β = 0.02) [19], KL 
rs9536314 (p = 0.44, β = 0.03) [6], and ATP8B1 (ATPase 
phospholipid transporting 8B1) rs2571244 (p = 0.28, 
β = 0.05) [16].

Discussion
This study leveraged a large, population-based sample of 
amyloid PET positive older adults who had genome-wide 
SNP data and serial longitudinal cognitive assessments to 
understand genetic factors that contribute to cognitive 
resilience. Through this design, we discovered a novel 
association with cognitive resilience to amyloidosis for a 
locus on chromosome 8 which was specific to the amy-
loid positive setting and displayed replication in an inde-
pendent cohort. We also identified biological pathways 
with enrichment of association, including a preponder-
ance related to immune system activation. Our data sup-
port the hypothesis that genetic heterogeneity is one of 
the factors that explains differential cognitive resilience 
to brain amyloidosis (Fig. 3).

Resilience to brain amyloidosis is likely complex. It is 
well-understood that environmental/lifestyle factors, 
such as early- and late-life intellectual enrichment and 
cerebrovascular disease, will influence cognitive trajec-
tories in older adults [41, 47, 64, 65]. Genetic factors are 
widely presumed to impact the degree of AD pathology, 

Table 4 Top HMAGMA gene‑based associations in the GWAS of resilience to amyloidosis

* Bold text indicates gene-based genome-wide significant association (p < 9.85 ×  10–7)

Gene [Chromosome] Number of SNPs p value Function

CNOT7 [8] 15 1.65 × 10–7 Immune response
C11ORF97 [11] 4 2.59 ×  10–6 Unknown

VPS37A [8] 11 3.31 ×  10–6 Endosomal sorting/trafficking

ZDHHC2 [8] 40 8.20 ×  10–6 Cell adhesion; synaptic plasticity

RCC1L [7] 20 2.47 ×  10–5 Guanine nucleotide exchange factor

LINC02449 [12] 35 6.34 ×  10–5 Unknown

MYOCOS [1] 29 7.23 ×  10–5 Unknown

RAD24 [8] 6 7.45 ×  10–5 DNA repair/checkpoint pathways

LINC00987 [12] 11 8.53 ×  10–5 Unknown

VSTM5 [11] 82 8.64 ×  10–5 Cell adhesion; neuronal morphology

Table 5 Top GSA‑SNP2 pathway associations in the GWAS of resilience to amyloidosis

* Bold text indicates FDR-corrected p < 0.05

Pathway [Database] Number of 
genes

p value Function

Integrin‑2 pathway [PID] 26 4.17 × 10–6 Cell adhesion
Negative regulation of TCF‑dependent signaling by WNT ligand antagonists 

[Reactome]
15 2.24 × 10–5 Immune response; 

signal transduction
FCGR activation [Reactome] 11 7.14 ×  10–5 Immune response

Keratinization [Reactome] 171 1.94 ×  10–4 Cell adhesion

Adipogenesis [WikiPathways] 119 2.23 ×  10–4 Lipid metabolism

Photodynamic therapy‑induced unfolded protein response [WikiPathways] 26 5.94 ×  10–4 Cellular stress response

SNARE interactions in vesicular transport [KEGG] 35 8.63 ×  10–4 Neurotransmitter release

Formation of the cornified envelope [Reactome] 118 8.98 ×  10–4 Keratinocyte cell barrier

Interferon gamma pathway [ST] 10 0.001 Immune response
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but relatively little of this architecture has been studied in 
the context of individuals with cognitive resilience in the 
setting of high levels of AD pathology. Further, the work 
so far at a population level has focused mainly on APOE. 
Case–control GWAS designs have been fruitful in identi-
fying non-APOE risk variants for AD dementia, but may 
not be ideal to discover disease-specific resilience fac-
tors given the discrepancies between clinically diagnosed 
probable AD dementia versus biologically defined AD 
[5] as well as the heterogeneity amongst controls, some 
of whom may have extant AD pathophysiology while 
remaining non-demented at the time of study inclusion. 
Our approach using an easily interpretable and general-
izable setting (amyloid positivity in a population-based 
sample of older adults) and integrating imaging biomark-
ers, genetics, and longitudinal clinical follow-up expands 
knowledge about heritable resilience factors in AD.

The top hit in our GWAS resided in MTMR7, which is 
ubiquitously expressed in the brain and contains a dif-
ferent SNP previously associated with susceptibility to 
Creutzfeldt-Jakob disease [57]. However, gene-based 
analyses of this region utilizing brain Hi-C for SNP-to-
gene mapping suggested that the causative variant at this 
locus may instead tag CNOT7, a gene linked to synap-
tic plasticity and hippocampal-dependent learning and 
memory in model systems [44]. In addition, rs12056505 
is a splicing quantitative trait locus (sQTL) for CNOT7 
in cultured fibroblasts (p = 1.5 ×  10–7) [10] and may be 

an expression quantitative trait locus (eQTL) for CNOT7 
in brain cortex (p = 5.82 ×  10–3) [22]. The nearby gene 
VPS37A has also been linked to hereditary spastic para-
plegia [72] and belongs to a family of sorting proteins 
which may be important for tau clearance [40]. Our new 
findings call attention to this gene-rich region on chro-
mosome 8 for further functional characterization, par-
ticularly given that top associated SNPs may not always 
represent the true functional variant at a locus.

It is still an open question whether the mecha-
nisms underlying resilience are fundamentally medi-
ated through differences in brain structure, metabolic 
maintenance, functional network compensation, or a 
combination of these and other avenues [3]. Emerging 
evidence suggests that global brain amyloid PET bur-
den is independently (from entorhinal cortex tau PET 
burden and cortical thickness) associated with memory 
decline, but only in the setting of very high amyloid lev-
els present for many years [35]. The association of chro-
mosome 8 rs12056505 with cognitive protection even 
in the setting of extremely high amyloid burden (global 
PiB SUVR ≥ 2.0) suggests that its role as a resilience fac-
tor cannot be purely ascribed to upstream processes 
yielding a lesser burden of amyloidosis. We considered 
other potential explanations for the cognitive resilience 
observed in rs12056505-C carriers. We did not find evi-
dence that this protective variant was associated with 
better vascular brain health or with significantly lower 
tau PET burden in key AD regions. However, the sub-
set of our sample with tau PET data was modest, and it 
is possible that lower tau accumulation in the setting of 
amyloidosis could be a mechanism for resilience in this 
variant that our subsample was underpowered to detect. 
Non-AD pathophysiology related to TDP-43 [32] or 
other concomitant degenerative factors can impact cog-
nitive trajectories and could not be directly accounted for 
in this study in the absence of validated in vivo biomark-
ers. Alternatively, other mechanisms outside of typical 
neurodegenerative and vascular disease pathways may 
be contributing to resilience, such as the immune sys-
tem and inflammation-related pathways identified in our 
poly-SNP analyses. A more comprehensive modeling of 
these putative resilience mechanisms in the context of 
genetic, sex-related, and lifestyle mediators may facilitate 
enhanced preventive and therapeutic targeting in AD and 
related disorders. Specific to this work, Fig. 4 summarizes 
our overarching experimental design and the discovery of 
genetic protective factors (and negative testing for other 
related factors) that were found in the context of resil-
ience to amyloidosis.

Despite these strengths, there are reasons why our main 
finding should be interpreted with caution. The sample 
size of our discovery cohort was small in comparison to 

Fig. 3 Conceptual model of genetic heterogeneity influencing 
cognitive resilience. A conceptual model displays the role of genetic 
heterogeneity in cognitive resilience to amyloidosis. Time is shown 
on the x‑axis and points of maximum outcome abnormality (PET or 
cognitive functioning) are indicated by higher values along the y‑axis. 
Sample cognitive trajectories, depicted by the blue curves, are shown 
in relation to the sigmoidal red curve depicting increasing brain PET 
amyloidosis over time. Genetic heterogeneity is shown as a modifier 
of cognitive resilience to amyloidosis, with more severe impairment 
(dark blue) related to a genetic risk profile and less impairment (light 
blue) related to a genetic protective profile. Figure  adapted from Jack 
et al. [27] with the author’s permission
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other GWAS of AD-relevant outcomes, and although the 
confirmatory association of APOE Ɛ4 with resilience in 
our dataset is reassuring for its broader interpretation, 
the possibility of a winner’s curse phenomenon regard-
ing our GWAS hit must be acknowledged. Although 
similar in size and data scope to the MCSA discovery 
cohort, the ADNI replication sample was also not a per-
fect match in some characteristics, including differences 
in selection framework (population-based versus clini-
cal trial sample), amyloid PET tracer, and specific cogni-
tive outcome. In this context, the presence of a validation 
signal for rs12056505 is encouraging, but is still modest 
overall and does not rule out the possibility of a false 
positive. In examining published results from the largest 
available AD case–control GWAS [36], we cannot find 
evidence supporting an association of rs12056505 with 
lower risk of clinically diagnosed probable AD dementia 
(p = 0.90, β = 0.997). Clinical diagnosis of AD dementia 
is by no means a proxy for resilience to AD pathology, 
and our data more broadly mirrors conclusions from a 

recent study on resilience in suggesting that the genetic 
architectures underlying these outcomes are likely to 
be meaningfully different [16]. Nevertheless, the lack 
of clear protective relationship of rs12056505 on clini-
cal AD dementia diagnosis in published data is a limi-
tation. Further, cognitive performance is impacted by 
numerous factors and as such may not be as specific as 
fluid- or imaging-based AD-relevant quantitative endo-
phenotypes. In summary, our top discovery is promis-
ing but additional validation studies in other cohorts and 
molecular and functional characterization are needed.

This work has several other limitations. For discovery 
we leveraged a rich dataset from a population-based 
sample, which offers the benefit of generalizability to 
the broader setting of older adults. However, this set-
ting may meaningfully differ from clinical trial sam-
ples (including our replication cohort) where a higher 
proportion of participants have AD biomarker abnor-
malities and/or cognitive impairment at baseline. An 
advantage of our study design was that it utilized a 

Fig. 4 Experimental design for the discovery of genetic factors influencing cognitive resilience to amyloidosis. This study analyzed older individuals 
with significant brain amyloidosis and found evidence for genetic factors associated with cognitive resilience in that setting (green check mark). 
Alternative potential mediators for resilience were assessed, including intellectual enrichment, sex‑related factors, resistance to tau accumulation, 
and cerebrovascular disease burden, and not explanatory for the genetic associations (red backslash icon). Our findings nominate new targets 
which warrant further study of the underlying molecular processes which impact brain structure and metabolism, functional network connectivity, 
and neuronal and synaptic health, to ultimately account for differential coping with amyloid pathology
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well-validated AD biomarker (amyloid PET) and linear 
regression to model cognitive trajectories, approaches 
that can be straightforwardly applied to other datasets. 
However, the optimal approach to modeling resilience 
is still an active question, and alternative methods 
based on latent variables (estimating cognitive dys-
function in cross-sectional data over and above that 
expected from pathology) [16], gene expression data 
[21], and longitudinal linear mixed models [8] may 
provide complementary information. In addition, we 
assessed differential cognitive resilience through the 
lens of a continuous measure of rate of decline, and 
acknowledge that our findings may not be applicable to 
a paradigm whereby cognitive resilience is operational-
ized as a marker of clinical status (i.e., coping without 
impairment). We also focused on memory performance 
as an outcome given its relevance to the setting of clini-
cally typical AD, but recognize that cognitive-genetic 
associations may well be domain-specific [31] related 
to the involvement of diverse brain regions and func-
tional networks, and that there may be weaknesses in 
the use of z-scores for longitudinal studies of cogni-
tive trajectory across individuals who may start from 
different levels of cognitive ability [11]. Further, we 
acknowledge that the respective outcome measures 
for cognitive resilience in the discovery and replica-
tion cohorts were not identical, and that future efforts 
incorporating our study design to additional large sam-
ples may benefit from phenotype harmonization to 
facilitate meta-analysis.

In summary, this study of a population-based sample 
discovered a novel gene variant and biological pathways 
associated with cognitive resilience to brain amyloidosis. 
Additional study of these putative resilience mechanisms 
may be vital for improved risk stratification and drug 
targeting for individuals with biomarker-confirmed AD 
pathophysiology.

Appendix
Data used in preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did 
not participate in analysis or writing of this report. A 
complete listing of ADNI investigators can be found at: 
http:// adni. loni. usc. edu/ wp- conte nt/ uploa ds/ how_ to_ 
apply/ ADNI_ Ackno wledg ement_ List. pdf.
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